Achieving Greater Self-Consistency in Large Language Models | by Anthony Alcaraz | Dec, 2023

Anthony Alcaraz
Towards Data Science

When LLMs are used to evaluate qualities like the correctness, accuracy, or relevance of a piece of text, consistency is paramount. If an LLM exhibits inconsistent judgements, then its evaluations become unreliable and untrustworthy.

If an LLM evaluates the reasoning quality of arguments, but contradicts itself by rating an invalid argument as more logically sound than a perfectly valid one, then it fails as an arbiter of reason. Its evaluations lose credibility due to the model’s own lack of logical consistency.

When such inconsistencies appear, there is no stable basis for comparison between the LLM’s assessments of different pieces of text. If the model arbitrarily contradicts itself, then sentences cannot be reliably ranked against one another based on the model’s inconsistent scorings.

In essence, inconsistency destroys the grounds for comparison that evaluations aim to provide in the first place. If an LLM cannot demonstrate consistent application of assessment criteria, then using it to evaluate text loses all effectiveness and utility.

So, consistency in judgement and evaluation is mandatory for LLMs employed to score or judge textual qualities and features. Without a high level of stability in its assessments, grounded in a consistent understanding of concepts being evaluated, the basis for comparison falls apart when leveraging LLM output as a form of evaluation or scoring.

Sampling multiple solutions reveals consistency between outputs strongly correlates with quality. However, existing consistency techniques rely on extracting and matching closed-form answers, restricting their applicability. This article explores methods to enhance self-consistency without such constraints, while also grounding decisions in real-world knowledge.

Image by the author

The Need for Self-Consistency

Despite rapid progress, logical failures and falsehoods continue hindering reliable reasoning in state-of-the-art models. For complex multi-step analysis or free-form generation, models often contradict themselves or invent unsupported facts.

This manifests in two key ways — inconsistent open-ended generation, and incoherent inferences. When performing…

Source link

Technology

adobe generative ai 1

Grace Yee, Senior Director of Ethical Innovation AI Ethics and Accessibility at Adobe Interview Series Adobe’s Claims Next Generative AI Features Will Be Commercially Safe Speaking of “early access” features, Adobe introduced AI-powered Lens Blur as an early access tool last year. With today’s Lightroom ecosystem update, it is finally available to everyone, no strings […]

Read More
Technology

Wejdź w VOX casino online, serce ekscytującego i bezpiecznego doświadczenia w obstawianiu!

Czy kiedykolwiek wyobrażałeś sobie, że wpadłeś na ekscytujący i rewolucyjny sposób na cieszenie się atmosferą bukmacherską, która przynosi wibrację i napięcie renomowanego paska Vegas bezpośrednio do twoich dłoni, niech to tylko relaksujesz się w rezydencji i wyjściu i wyjściu o? Następnie jesteś we właściwej pozycji! VOX kasyno zrewolucjonizował sposób, w jaki entuzjaści gier biorą udział […]

Read More
Technology

Fontan – Twój wiodący cel kasyna i doskonałości bukmacherskiej

Fontan służy jako znana platforma w branży hazardowej internetowej, zapewniając niezrównane wrażenia dla entuzjastów kasyn i zawodników sportowych. Jako ustalona nazwa w świecie rozrywki, FontanKasyno zapewnia szeroki wybór gier kasynowych, takich jak automaty, gry stołowe, wybór dealerów na żywo i nie tylko, obsługując zainteresowania każdego gracza. Ponadto platforma oferuje szeroką sekcję bukmacherską, w tym popularne […]

Read More